Références :

Algèbre, Xavier Gourdon

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Théo (Lemme des noyaux). Soit $f \in \mathcal{L}(E)$ et $P = P_1...P_k \in \mathbb{K}[X]$, les polynômes P_i étant premiers entre eux deux à deux. Alors

$$KerP(f) = KerP_1(f) \oplus ... \oplus KerP_k(f).$$

Prop. Soit $f \in \mathcal{L}(E)$ et $F \in \mathbb{K}[X]$ un polynôme annulateur de f. Soit $F = \beta M_1^{\alpha_1}...M_s^{\alpha_s}$ la décomposition en facteurs irréductibles de $\mathbb{K}[X]$ du polynôme F. Pour tout $i \in [1, s]$, on note $N_i = Ker M_i^{\alpha_i}(f)$. On a alors $E = N_1 \oplus ... \oplus N_s$, et pour tout $i \in [1, s]$, la projection sur N_i parallèlement à $\bigoplus_{j \neq i} N_j$ est un polynôme en f.

Déf. On dit que $f \in \mathcal{L}(E)$ est **semi-simple** si pour tout sous espace vectoriel F de E stable par f, il existe un supplémentaire S de F stable par f. Une matrice est dite **semi-simple** si l'endomorphisme f de \mathbb{K} dont M est la base canonique de \mathbb{K}^n est semi-simple.

Théo. Soit $f \in \mathcal{L}(E)$. f est semi-simple si et seulement si son polynôme minimal est sans facteurs carrés.

 $D\acute{e}monstration$. Notons Π_f le polynôme minimal de f. Soit $\Pi_f = M_1^{\alpha_1}...M_r^{\alpha_r}$ la décomposition de Π_f en facteurs irréductibles de $\mathbb{K}[X]$.

 \bullet Soit F un sous espace vectoriel stable par f. Montrons que

$$F = \bigoplus_{i=1}^{r} [Ker M_i^{\alpha_i}(f) \cap F]$$

Pour tout $i \in [1, r]$, on note $F_i = Ker M_i^{\alpha_i}(f)$. On sait, par le lemme des noyaux, que $E = F_1 \oplus ... \oplus F_r$ ($P_i(f)$ est un polynôme annulateur de f donc Ker P(f) = E). Pour tout $i \in [1, r]$, on note p_i la projection sur F_i parallèlement à $\bigoplus_{j \neq i} F_j$. On sait

que pour tout $i \in [1, r]$, p_i est un polynôme en f. Comme F est stable par f, F est donc stable par p_i ie $p_i(F) \subset F$. On a aussi $p_i(F) \subset p_i(E) = F_i$. Finalement, on a $p_i(F) \subset F_i \cap F$ et comme $Id_E = p_1 + ... + p_r$, on a

$$F \subset p_1(F) + \dots + p_r(F) = p_1(F) \oplus \dots \oplus p_r(F) \subset (F_1 \cap F) \oplus \dots \oplus (F_r \cap F).$$

L'inclusion réciproque est facile puisque pour tout $i \in [1, r]$, $F_i \cap F \subset F$ donc $(F_1 \cap F) \oplus ... \oplus (F_r \cap F) \subset F$.

• Supposons maintenant que Π_f est irréductible. Montrons que f est semi-simple.

Soit F un sous espace vectoriel stable par f. On veut donc montrer qu'il existe un supplémentaire S de F dans E stable par f.

Si F = E alors c'est terminé avec $S = \{0\}$. Sinon, soit $x_1 \in E \setminus F$. Considérons

$$E_{x_1} = \{ P(f)(x_1), P \in \mathbb{K}[X] \}.$$

Le sous espace vectoriel E_{x_1} est stable par f. Nous allons montrer que $E_{x_1} \cap F = \{0\}$.

Soit $I_{x_1} = \{P \in \mathbb{K}[X], P(f)(x_1) = 0\}$. C'est un idéal de $\mathbb{K}[X]$, non réduit à $\{0\}$ car $\Pi_f \in I_{x_1}$, donc il existe un polynôme unitaire Π_{x_1} tel que $I_{x_1} = (\Pi_{x_1}) = \Pi_{x_1}\mathbb{K}[X]$. Comme $\Pi_f \in I_{x_1}$ le polynôme Π_{x_1} divise Π_f et Π_f étant irréductible et unitaire, on a $\Pi_{x_1} = \Pi_f$. Le polynôme Π_{x_1} est donc irréductible. Soit $y \in E_{x_1} \cap F$. Il existe un polynôme $P \in \mathbb{K}[X]$ tel que $y = P(f)(x_1)$. Si $y \neq 0$, alors $P \notin I_{x_1} = (\Pi_{x_1})$, donc Π_{x_1} ne divise pas P et Π_{x_1} étant irréductible, Π_{x_1} et P sont premiers entre eux. D'après le théorème de Bezout, il existe donc $U, V \in \mathbb{K}[X]$ tels que $UP + V\Pi_{x_1} = 1$, donc

$$x_1 = U(f) \circ P(f)(x_1) + V(f) \circ \Pi_{x_1}(f)(x_1) = U(f)(y)$$

Or $y \in F$ et F est stable par f donc $x_1 = U(f)(y) \in F$ ce qui est absurde. On a donc y = 0. On a donc le résultat.

On vient de montrer que E_{x_1} et F sont en somme directe et E_{x_1} est stable par f.

Si $F \oplus E_{x_1} = E$, alors c'est terminé.

Sinon, on réitère le procédé.

On a donc, le résultat après un nombre fini d'itérations k (on travaille en dimension finie). Le sous espace vectoriel $S = E_{x_1} \oplus \ldots \oplus E_{x_k}$ est donc stable par f et vérifie $F \oplus S = E$.

- Montrons que f est semi-simple si et seulement si $\Pi_f = M_1...M_r$ est produit de polynômes irréductibles unitaires distincts deux à deux.
 - ▶ Supposons f semi-simple. Soit $\Pi_f = M_1^{\alpha_1}...M_r^{\alpha_r}$ la décomposition de Π_f en facteurs irréductibles unitaires de $\mathbb{K}[X]$. Il s'agit de montrer que pour tout $i \in [1, r], \alpha_i = 1$. Supposons, au contraire, qu'il existe $i \in [1, r]$ tel que $\alpha \geq 2$. Si $M = M_i$, on voit qu'il existe $N \in \mathbb{K}[X]$ tel que $\Pi_f = M^2 N$. Soit F = KerM(f). Le sous espace vectoriel F est stable par f semi-simple donc il existe un supplémentaire S de F stable par f. Montrons que MN(f) s'annule sur S. Si $x \in S$, alors $MN(f)(x) \in F$ car $M(f)[MN(f)(x)] = \Pi_f(f)(x) = 0$ et $MN(f)(x) \in S$ car S est stable par f. Donc $MN(f)(x) \in F \cap S = \{0\}$ et donc MN(f)(x) = 0. L'endomorphisme MN(f) s'annule donc sur S. Il s'annule aussi sur F car si $y \in F = KerM(f)$, alors MN(f)(y) = N[M(f)(y)] = 0. Comme $F \oplus S = E$, MN(f) s'annule sur E tout entier ie MN(f) = 0. Ceci contredit la minimalité du degré du polynôme minimal $\Pi_f = M^2 N$.
 - Supposons $\Pi_f = M_1...M_r$ avec les M_i irréductibles unitaires et distincts deux à deux. Soit F un sous espace vectoriel de E stable par f. Pour tout $i \in \llbracket 1,r \rrbracket$, notons $F_i = KerM_i(f)$. On a $E = F_1 \oplus ... \oplus F_r$ et d'après ce qui précède, $F = \bigoplus_{i=1}^r (F \cap F_i)$. Pour tout $i \in \llbracket 1,r \rrbracket$, F_i est stable par f. Notons $f_i \in \mathcal{L}(F_i)$ la restriction de f à F_i . On a $M_i(f_i) = 0$ et M_i est irréductible ce qui prouve que

 M_i est le polynôme minimal de f_i . On utilise le deuxième point pour affirmer que f_i est semi-simple. Or $F \cap F_i$ est stable par f_i donc il existe un supplémentaire S_i stable par f_i (et donc par f) tel que $(F_i \cap F) \oplus S_i = F_i$. Posons maintenant $S = S_1 \oplus ... \oplus S_r$, on a

$$E = F_1 \oplus \dots \oplus F_r$$

$$= \bigoplus_{i=1}^r (F_i \cap F) \oplus S_i$$

$$= \left[\bigoplus_{i=1}^r (F_i \cap F) \right] \oplus \left[\bigoplus_{i=1}^r S_i \right]$$

$$= F \oplus S$$

et S est stable par f. L'endomorphisme est donc semisimple.

Leçons possibles : 141 - 153 - 154